385. Physical Properties and Chemical Constitution. Part II. Esters of $\beta \beta$-Substituted Glutaric Acids.

By Arthur I. Vogel.

The present work was undertaken with the objects (1) of providing certain physicochemical data (surface tension, density, refractive index) for a comprehensive series of glutaric esters, and (2) of discovering new evidence for the valency-deflexion hypothesis based on relationships involving these quantities. It is clear that the difference between any of the properties of the $\beta \beta$-substituted glutaric and those of the corresponding malonic esters will yield values for $2 \times \mathrm{CH}_{2}$ and these may be compared with the value for CH_{2} determined

Table I.

Substituent.	Malonic series. Pa	Glutaric series. chor.	Diff. for $2 \mathrm{CH}_{2}$.	Malonic series. $\left[R_{L}\right]_{\mathrm{D}}$.	Glutaric series.	$\begin{aligned} & \text { Diff. for } \\ & 2 \mathrm{CH}_{2} . \end{aligned}$
H, H	283.0	$361 \cdot 4$	$78 \cdot 4$	$28 \cdot 62$	$37 \cdot 58$	$8 \cdot 96$
Me, H	$321 \cdot 9$	$399 \cdot 9$	$78 \cdot 0$	$33 \cdot 36$	$42 \cdot 36$	$9 \cdot 00$
Me, Me....................	$355 \cdot 8$	$431 \cdot 8$	$76 \cdot 0$	37.73	$46 \cdot 88$	$9 \cdot 15$
Me, Et	$391 \cdot 3$	$466 \cdot 8$	$75 \cdot 5$	$42 \cdot 13$	$51 \cdot 18$	$9 \cdot 05$
Et, Et	$428 \cdot 3$	$500 \cdot 7$	$72 \cdot 4$	$46.51 \dagger$	55.74	$9 \cdot 23$
Me, Pr^{a}.................	$431 \cdot 2$	$505 \cdot 9$	$74 \cdot 7$	46.88	$56 \cdot 14$	$9 \cdot 26$
Et, $\mathrm{Pr}^{a} \ldots \ldots \ldots \ldots \ldots \ldots . .$.	468.8	539.8	71.0	$51 \cdot 44$	$60 \cdot 48$	$9 \cdot 04$
$\mathrm{Pr}^{a}, \mathrm{Pr}^{a}$................	$505 \cdot 1$	$575 \cdot 9$	$70 \cdot 8$	$56 \cdot 07$	65.03	$8 \cdot 96$
$\begin{aligned} & \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}>\mathrm{C}<\ldots \ldots . \\ & \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}>{ }^{2}<\ldots \end{aligned}$	$408 \cdot 0$	$482 \cdot 3$	$74 \cdot 3$	$44 \cdot 82$	53.86	$9 \cdot 04$
$\mathrm{CH}_{2}<\mathrm{CH}_{2} \cdot \mathrm{CH}_{2}>\mathrm{CH}<$	444.2	$517 \cdot 4$	75•2	49•16	$58 \cdot 26$	$9 \cdot 10$
Substituent.	Malonic series. M	Glutaric series.	$\begin{aligned} & \text { Diff. for } \\ & 2 \mathrm{CH}_{2} . \end{aligned}$	Malonic series. $\left[R_{L}\right]_{\mathrm{F}-\mathrm{C}} . \quad\left[R_{L}\right]_{\alpha^{\prime}-\mathrm{C}}$	Glutaric $\left[R_{L}\right]_{\text {F- }}$.	c series. $\left[R_{L}\right]_{\mathbf{G}-\mathrm{C}} .$
H, H \quad.	$186 \cdot 71$	228.01	$41 \cdot 30$	$0.43 \quad 0.70$	0.56	$0 \cdot 89$
Me, H	$206 \cdot 61$	$248 \cdot 20$	$41 \cdot 59$	$0.49 \quad 0.80$	$0 \cdot 64$	$0 \cdot 97$
Me, Me...................	226.55	$268 \cdot 83$	$42 \cdot 28$	$0 \cdot 47 \quad 0.90$	0.71	1.08
Me, Et	$247 \cdot 54$	$290 \cdot 13$	$42 \cdot 59$	$0.61 \quad 1.00$	$0 \cdot 77$	$1 \cdot 17$
Et, Et $\ldots \ldots \ldots \ldots \ldots \ldots .$.	$268.59 \dagger$	$311 \cdot 80$	$43 \cdot 21$	$0.68 \dagger \quad 1.10 \dagger$	$0 \cdot 84$	$1 \cdot 26$
Me, $\operatorname{Pr}^{a} \ldots \ldots \ldots \ldots \ldots \ldots .$.	267.98	$310 \cdot 71$	$42 \cdot 73$	0.71 1.11	$0 \cdot 85$	$1 \cdot 31$
Et, $\mathrm{Pr}^{\text {a }}$.	$289 \cdot 07$	332.05	42.98	$0.77 \quad 1.16$	0.91	$1 \cdot 38$
$\mathrm{Pr}^{a}, \mathrm{Pr}^{a}$	309•08*	$352 \cdot 40$	$43 \cdot 32$	$0.84 \quad 1.35$	0.97	1.50
$\begin{aligned} & \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}>\mathrm{C}<\ldots \ldots . . \\ & \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}> \end{aligned}$	$269 \cdot 37$	311•78	$42 \cdot 41$	$0 \cdot 66 \quad 1.05$	$0 \cdot 73$	$1 \cdot 23$
	$291 \cdot 23$	$333 \cdot 97$	42•74	$0 \cdot 73 \quad 1 \cdot 14$	$0 \cdot 86$	$1 \cdot 31$

* Original value 311.94 (this vol., p. 334) was miscalculated.
\dagger The line for this ester was omitted from Table V of Part I (this vol., p. 335) ; it included these data and also $\left[R_{L}\right]_{\mathrm{C}} 46 \cdot 30, R\left[_{L}\right]_{\mathrm{F}} 46 \cdot 98$, and $R[L]_{G^{\prime}} \mathbf{4 7} \cdot 40$.
for the normal dibasic esters. Any divergence between these values may be attributed directly to valency deflexion, since all other variables are the same in the two series. This method has the great advantage that a knowledge of the individual atomic and structural constants is unnecessary. The results of such a comparison for the methyl esters are in Table I, the data in Part I (this vol., p. 333) for the malonic series being employed.

It will be seen that only the parachor and the molecular refraction coefficients* exhibit real divergencies from the normal CH_{2} differences of 40.3 and 20.63 respectively (Part I, loc. cit.) : irregular differences are obtained for the refractivities and dispersions. The valency angles would thus appear to be in the order $\operatorname{Pr}^{a}, \operatorname{Pr}^{a}<\mathrm{Et}, \mathrm{Pr}^{a}<\mathrm{Et}, \mathrm{Et}<\mathrm{Me}, \operatorname{Pr}^{a}<$ $\mathrm{Me}, \mathrm{Et}<\mathrm{Me}, \mathrm{Me}<\mathrm{Me}, \mathrm{H}<\mathrm{H}, \mathrm{H}$, and the difference between $\mathrm{Et}, \mathrm{Et}, \mathrm{Et}, \mathrm{Pr}^{a}$, and $\operatorname{Pr}^{a}, \mathrm{Pr}^{a}$ would also appear to be small.

Table II records data for a number of sets of isomeric esters investigated by the author.
Table II.

Ester.	P.	$M n^{20}{ }^{2}$.	$\left[R_{L}\right]_{\mathrm{D}}$.	$\left[R_{L}\right]_{\mathbf{F}-\mathrm{c}}$.	[$\left.R_{L}\right]^{\prime} \mathrm{c}^{\prime}-\mathrm{c}$.
Et malonate	$361 \cdot 5$	$226 \cdot 37$	37-89	0.58	$0 \cdot 90$
Me glutarate	$361 \cdot 4$	$228 \cdot 01$	$37 \cdot 58$	$0 \cdot 56$	$0 \cdot 89$
Me dimethylmalonate	$355 \cdot 8$	226.55	37-73	$0 \cdot 57$	$0 \cdot 90$
Me ethylmalonate................................	$360 \cdot 2$	$227 \cdot 09$	$37 \cdot 97$	$0 \cdot 58$	$0 \cdot 91$
Et succinate	$400 \cdot 0$	247-19	$42 \cdot 35$	$0 \cdot 64$	$1 \cdot 02$
Me adipate.	$401 \cdot 8$	$248 \cdot 69$	$42 \cdot 23$	$0 \cdot 62$	0.99
Me methylethylmalonate	$391 \cdot 3$	$247 \cdot 54$	$42 \cdot 13$	$0 \cdot 61$	$1 \cdot 00$
Me methylglutarate	$399 \cdot 9$	$248 \cdot 20$	$42 \cdot 36$	$0 \cdot 64$	$0 \cdot 97$
Et glutarate	$439 \cdot 6$	267-89	$46 \cdot 93$	$0 \cdot 70$	$1 \cdot 10$
Me pimelate	$443 \cdot 3$	$269 \cdot 19$	$46 \cdot 89$	$0 \cdot 71$	$1 \cdot 06$
Me diethylmalonate	$428 \cdot 3$	$268 \cdot 58$	$46 \cdot 51$	$0 \cdot 68$	$1 \cdot 10$
Me methyl-n-propylmalonate	431-2	267-98	$46 \cdot 88$	$0 \cdot 71$	$1 \cdot 11$
Me dimethylglutarate	$431 \cdot 8$	$268 \cdot 83$	$46 \cdot 88$	$0 \cdot 71$	$1 \cdot 08$
Et adipate.	$480 \cdot 2$	$288 \cdot 58$	51.51	$0 \cdot 77$	1.22
Me suberate	$484 \cdot 4$	$289 \cdot 81$	$51 \cdot 55$	$0 \cdot 78$	$1 \cdot 24$
Me ethyl-n-propylmalonate	$468 \cdot 8$	$289 \cdot 07$	$51 \cdot 44$	$0 \cdot 77$	$1 \cdot 16$
Me methylethylglutarate....	$466 \cdot 8$	$290 \cdot 13$	$51 \cdot 18$	$0 \cdot 77$	$1 \cdot 17$
Et pimelate	$520 \cdot 5$	$309 \cdot 08$	$56 \cdot 23$	$0 \cdot 83$	$1 \cdot 33$
Me azelate ..	$524 \cdot 6$	$310 \cdot 43$	$56 \cdot 14$	0.82	$1 \cdot 34$
Me di-n-propylmalonate	$505 \cdot 1$	$311 \cdot 94$	$56 \cdot 07$	$0 \cdot 84$	$1 \cdot 35$
Me diethylglutarate	$500 \cdot 7$	311.80	$55 \cdot 74$	$0 \cdot 84$	$1 \cdot 26$
Me methyl-n-propylglutarate	$505 \cdot 9$	$310 \cdot 71$	$56 \cdot 14$	$0 \cdot 85$	$1 \cdot 31$
Et dimethylglutarate	$510 \cdot 6$	$308 \cdot 71$	$55 \cdot 98$	$0 \cdot 86$	$1 \cdot 28$
Me cyclohexane-1 : 1-diacetate	$517 \cdot 2$	$330 \cdot 97$	$58 \cdot 26$	$0 \cdot 86$	$1 \cdot 31$
Me 3-methylcyclopentane-1 : 1-diacetate	$519 \cdot 4$	$331 \cdot 42$	$58 \cdot 62$	$0 \cdot 87$	$1 \cdot 34$
Et cyclohexane-1: 1-diacetate	$595 \cdot 5$	$373 \cdot 67$	$67 \cdot 65$	$1 \cdot 02$	$1 \cdot 54$
Et 3-methylcyclopentane-1: 1-diacetate	$599 \cdot 0$	$371 \cdot 16$	$67 \cdot 99$	$1 \cdot 02$	1.58
Me 3-methylcyclohexane-1 : 1-diacetate	$555 \cdot 2$	$353 \cdot 86$	$63 \cdot 27$	$0 \cdot 96$	$1 \cdot 47$
Me 4-methylcyclohexane-1 : 1-diacetate	$553 \cdot 9$	353-86	$63 \cdot 04$	$0 \cdot 94$	1.42
Et 3-methylcyclohexane-1 : 1-diacetate	$633 \cdot 3$	$393 \cdot 53$	$72 \cdot 48$	1.09	$1 \cdot 64$
Et 4-methylcyclohexane-1: 1-diacetate ...	$630 \cdot 9$	$393 \cdot 55$	72-31	$1 \cdot 10$	$1 \cdot 68$

The most remarkable and unexpected feature of these results is the large variation in the parachor in several series; this must be attributed largely to valency deflexion. It is of interest that Sugden (see " The Parachor and Valency," 1930, p. 33) originally based the additivity of the parachor on its values for isomeric substances, those which differed only in the position of groups or linkages in the molecule being deemed to give identical parachors. Other examples of the variation of the parachor for isomeric compounds are known (Rep. Brit. Assoc., 1932, 264 ; compare Mumford and Phillips, J., 1929, 2112), so Sugden's generalisation is no longer acceptable.

Smaller but not parallel variations are present in the molecular refraction coefficients but these are not large enough to justify any useful conclusions. The dispersions $\left[R_{L}\right]_{\mathrm{F}-\mathrm{o}}$ and $\left[R_{L}\right]_{G^{\prime}-\sigma}$ would seem to be approximately the same for isomeric compounds.

Experimental.

Preparation of $\beta \beta$-Substituted Glutaric Acids by the Guareschi Reaction.-This reaction has been widely employed for work in connexion with the valency-deflexion hypothesis but no

[^0]complete details have been published (compare Guareschi, Atti Accad. Sci. Torino, 1900-1901, 36,443 ; Kon and Thorpe, J., 1919, 115, 693). In view of the expensive nature of the materials involved, full details are given of the preparation of the dicyano-imides from fourteen ketones, and also an improved method of hydrolysis of these to the corresponding substituted glutaric acids.

Preparation of dicyano-imides. $400 \mathrm{C} . c$. of absolute ethyl alcohol absorb ca. 52 g. ($3 \mathrm{~g} .-\mathrm{mols}$.) of anhydrous ammonia at 0°, the solution expanding to approximately 600 c.c. A mixture of $1 \mathrm{~g} .-\mathrm{mol}$. of the dry ketone and 2 g .-mols. of pure ethyl cyanoacetate, contained in a large (1500 c.c.) wide-mouthed glass-stoppered bottle and cooled to -5°, is treated with 400 c.c. of absolute alcohol, previously saturated at -5° (5-6 hours) in an all-glass wash bottle with ammonia, derived from a cylinder and dried by passage through lime. The whole is kept at 0° for $1-7$ days (the time depends upon the ketone employed) with the stopper held down by means of a heavy weight, and then the separated ammonium salt of the dicyano-imide is filtered off and washed with alcohol, followed by ether (cyclopentanone, 3-methylcyclopentanone, cyclohexanone, 3 - and 4-methylcyclohexanone, trans- β-decalone, trans-hexahydro- β-hydrindone, acetone, methyl ethyl ketone, and methyl- n-propyl ketone). The solid ammonium salt is dissolved in the minimum quantity of boiling water ($c a .1-1.5 \mathrm{I}$.), a large excess of concentrated hydrochloric acid ($300-500$ c.c.) added, and the precipitated dicyano-imide collected after 12 hours and dried at 100°. The products from the dicyclic ketones must be boiled with dilute hydrochloric acid, since the ammonium salts are sparingly soluble in water. For diethyl, ethyl n-propyl, and di- n-propyl ketones some cyanoacetamide but very little ammonium salt separates, and the filtered solution is therefore diluted with 1.5 times its volume of water, extracted four times with ether (ca. 11 .), the aqueous solution strongly acidified with concentrated hydrochloric acid, and the separated solid collected after 24 hours and dried at 100°.

Ketones. These were usually dried over anhydrous sodium sulphate before use, and were obtained from the following sources :

Acetone. B.D.H. " A.R.," dried over calcium chloride; b. p. 56-56.6 .
Methyl ethyl ketone. A purified commercial specimen was fractionated and the portion, b. p. $79-80^{\circ}$, collected.

The higher aliphatic ketones were prepared from the purified acids (fractionation only) by passage over manganous oxide at $300-350^{\circ}$, and had the following b. p.'s : Diethyl ketone, $100-103^{\circ}$; methyl n-propyl ketone, $101 \cdot 5-103.5^{\circ}$; ethyl n-propyl ketone, $121-125^{\circ}$; di- n propyl ketone, $143-145^{\circ}$.
cycloPentanone. Prepared from adipic acid (compare Vogel, J., 1928, 1021; 1929, 727); b. p. 131°.
cycloHexanone. Commercially " pure" specimens vary considerably in purity and give widely different yields of the dicyano-imide. cycloHexanol may be removed by standing over calcium chloride (compare Hückel, Neunhoeffer, Gercke, and Frank, Annalen, 1929, 477, 99). The best method is to purify it through the bisulphite compound prepared with aqueousalcoholic sodium bisulphite solution (Ruzicka and Brugger, Helv. Chim. Acta, 1926, 9, 339), and after the solid has been washed with ether to remove any cyclohexanol present, it is decomposed in a separating-funnel with 10% sodium hydroxide solution, and the liberated ketone extracted with ether; b. p. 156-157 ${ }^{\circ}$.

3-Methylcyclopentanone. From pure β-methyladipic acid, derived from the oxidation of 4-methylcyclohexanol with nitric acid (Vogel, J., 1931, 912 ; Desai, ibid., p. 1219) ; b. p. $143-$ 145°.

3- and 4-Methylcyclohexanones. Pure products from Deutsche Hydrierwerke.
trans- β-Decalone. From pure trans- β-decalol, m. p. $74-75^{\circ}$ (see Tudor and Vogel, this vol., p. 1251, for references) ; b. p. $117^{\circ} / 16 \mathrm{~mm}$.
trans-Hexahydro- β-hydrindone. From trans-cyclohexane-1:2-diacetic acid, m. p. 167° (Tudor and Vogel, loc. cit.) ; b. p. $91-92^{\circ} / 13 \mathrm{~mm}$.

The yields of dicyano-ímides from the various ketones ($1 \mathrm{~g} .-\mathrm{mol}$.) and ethyl cyanoacetate (2 g .-mols.) were as follows (the time of standing in the ice-chest is shown in parentheses) : Acetone, 129 g ., 68% (3 days) ; methyl ethyl ketone, 130 g ., 63% (42 hours) ; diethyl ketone, $97 \mathrm{~g} ., 44 \%$ (7 days) ; methyl n-propyl ketone, $140 \mathrm{~g} ., 64 \%$ (5 days) ; ethyl n-propyl ketone, 39 g ., 17% ($7 \cdot 5$ days) ; di- n-propyl ketone, 500 c.c. of alcohol employed, 47 g ., 19% (8 days) ; cyclopentanone, $120 \mathrm{~g} ., 55 \%$ (24 hours) ; cyclohexanone, ex bisulphite compound, $165 \mathrm{~g} ., 73 \%$ (4 days) ; cyclohexanone, best sample of commercially " pure," $126 \mathrm{~g} ., 55 \%$ (4 days); 3-methylcyclopentanone, 116 g., 50% (4 days) ; 3-methylcyclohexanone, 142 g ., 58% (4 days) ; 4 -methylcyclohexanone, $168 \mathrm{~g} ., 69 \%$ ($2 \cdot 5$ days) ; trans- β-decalone, $188.5 \mathrm{~g} ., 66 \%$ (7 days) ; trans-hexahydro- β -
hydrindone, $195 \mathrm{~g} ., 72 \%$ (7 days). The most expensive cyclic ketones may be largely recovered from the alcoholic filtrate from the ammonium salts by adding a large excess of water, filtering if necessary, saturating with ammonium sulphate, and extracting several times with ether.

Hydrolysis of the dicyano-imides to the corresponding 1:1-diacetic acids. The following method gives nearly theoretical yields of the crude acid. 1 G.-mol. of the finely divided imide is dissolved in 480 c.c. of concentrated sulphuric acid in a spacious, Pyrex, round-bottomed flask (gentle warming is usually necessary and a clear reddish-brown solution is obtained), the solution is kept over-night, and then $450 \mathrm{c} . \mathrm{c}$. of water are slowly added with frequent shaking. The whole is heated under reflux for 12-24 hours, very cautiously at first owing to the attendant frothing which subsides after 2-3 hours. It is essential to shake the flask well at intervals of about 3 hours. The acid separates on cooling and is collected upon a large sintered Jena-glass funnel. For the dicyano-imides from trans- β-decalone and trans-hexahydro- β-hydrindone, the best proportions are respectively 750 c.c. sulphuric acid, 700 c.c. water, and 1350 c.c. acid, 1200 c.c. water. Very little acid is contained in the sulphuric acid mother-liquors in the preparation of the cyclic acids, and the proportion is less than 5% for the aliphatic acids. The crude acids are usually dried at 100° (the dimethyl acid at 90°, and the other higher aliphatic acids at 50°), and are purified by extraction with sodium bicarbonate solution, any imide present being thus removed (potassium bicarbonate must be employed for trans-decahydronaphthalene-2:2-diacetic acid owing to the sparing solubility of the sodium salt), and strong acidification with concentrated hydrochloric acid. The cyclic acids are all almost quantitatively precipitated, but for the alkyl-substituted acids considerable quantities remain in solution and it is therefore best to saturate with ammonium sulphate and to isolate the acid by three or four extractions with ether.

The details of the subsequent purification of the various acids are given below.
$\beta \beta$-Dimethylglutaric acid. The crude acid was converted into the anhydride by refluxing with excess of acetic anhydride for 7 hours and subsequent distillation; b. p. $156-157^{\circ} / 20 \mathrm{~mm}$., m. p. 125°, ex light petroleum (b. p. $100-120^{\circ}$) (Perkin, J., 1896, 69, 1475, gives m. p. $124-125^{\circ}$; Perkin and Thorpe, J., 1899, 75, 54, give b. p. $181^{\circ} / 25 \mathrm{~mm}$.). The anhydride (29.5 g .) was refluxed for 2.5 hours with aqueous potassium hydroxide ($35 \mathrm{~g} ., 3$ mols., in 55 g . of water), acidified with concentrated hydrochloric acid, extracted thrice with ether after saturation with ammonium sulphate, dried with anhydrous sodium sulphate, the ether removed, and the residue recrystallised from concentrated hydrochloric acid and dried at 70°; m. p. 101° (Guareschi, loc. cit., gives m. p. 103-104 ${ }^{\circ}$ Thole and Thorpe, J., 1911, 99, 435, give m. p. 101°).
β-Methyl- β-ethylglutaric acid. Recrystallised twice from dry benzene; m. p. 85° (Guareschi, 87°; Thole and Thorpe, 86°).
$\beta \beta$-Diethylglutaric acid. Recrystallised successively from dry benzene and from chloroformlight petroleum (b. p. $40-60^{\circ}$) ; m. p. 106° (Guareschi, 108°).
β-Methyl- β-n-propylglutaric acid. Recrystallised twice from dry benzene; m. p. 92-93 ${ }^{\circ}$ (Guareschi, 92°).
β-Ethyl- β-n-propylglutaric acid. Recrystallised from benzene-light petroleum (b. p. $40-60^{\circ}$), m . p. $62 \cdot 5-63 \cdot 5^{\circ}$, then from hot water (the solution was poured off from a small quantity of oil), m. p. $67-68^{\circ}$, and another recrystallisation from hot water gave m. p. 69°, unaffected by further crystallisation (Guareschi, 71-72 ${ }^{\circ}$).

Di-n-propylglutaric acid. Recrystallised from benzene; m. p. 117° (Guareschi, Gazzetta, $1919,49,124$, gives m. p. 112-113 ${ }^{\circ}$; Bains and Thorpe, J., 1923, 123, 1209, m. p. 114.5-115 ${ }^{\circ}$). cycloPentane-1:1-diacetic acid. The crude acid was converted into the anhydride, m. p. 68°, with acetic anhydride (Kon and Thorpe, J., 1919, 115, 701, give m. p. 68°) and then into the acid as described above for the dimethyl acid. Recrystallised from hot water; m. p. $176-177^{\circ}$ (Kon and Thorpe, loc. cit., give m. p. 176- 177°).
cycloHexane-1: 1-diacetic acid. The crude acid was purified through the anhydride and had m. p. 181° after recrystallisation from dilute alcohol (Thole and Thorpe, J., 1911, 99, 445, give m. p. 181°).

3-Methylcyclopentane-1:1-diacetic acid. Purified through the anhydride; m. p. 135° (compare Vogel, J., 1931, 913; Desai, J., 1931, 1220).

3-Methylcyclohexane-1:1-diacetic acid. Recrystallised successively from hot water and 20\% alcohol; m. p. 142° (Thorpe and Wood, J., 1913, 103, 1597, give m. p. 143°).

4-Methylcyclohexane-1:1-diacetic acid. Purified as for the 3-methyl acid; m. p. 158-159 ${ }^{\circ}$ (Thorpe and Wood, loc. cit., give m. p. 158°).
trans-Decahydronaphthalene-2 : 2-diacetic acid. Recrystallised from rectified spirit or from acetone; m. p. 175° (Rao, J., 1929, 1962, gives m. p. 175°).
trans-Hexahydrohydrindene-2:2-diacetic acid. Recrystallised from rectified spirit; m. p. 224° (Kandiah, J., 1931, 943, gives m. p. 224°).
β-Methylglutaric acid. This was prepared by Day and Thorpe's method (J., 1920, 117, $\mathbf{1 4 6 5}^{\circ}$ and recrystallised from chloroform; m. p. 88° (Day and Thorpe give m. p. 87°).

Preparation of Esters.-These were obtained by refluxing the pure acid with a mixture of the pure dry alcohol, pure sodium-dried benzene, and concentrated sulphuric acid for several hours (compare Vogel, J., 1928, 2021; 1933, 338).

Measurement of Refractive Indices and Dispersions.-These determinations were carried out at $20^{\circ} \pm 0.05^{\circ}$ on a new Pulfrich refractometer. A Zeiss electric sodium lamp and an H -type of Geissler hydrogen tube were used as the sources of illumination. The latter must be checked periodically with a standard liquid, such as ethyl succinate, since the G^{\prime} line becomes relatively indistinct after some use, due possibly to the gases evolved from the aluminium electrodes, and other lines appear. This difficulty is largely overcome by the use of Guild's form of hydrogen vacuum tube (Proc. Physical Soc., 1916, 28, 69; compare Hilger's Catalogue, 1929, F11).

All the measurements described in Part I have been checked with the new refractometer, and revised figures for a few liquids are given at the end of this paper.

Measurement of Surface Tension and of Density over a Range of Temperatures.-The technique has already been described (Part I, this vol., p. 336). Three surface-tension apparatus, A, B, and C, were employed, the constants of which were $1.8545,2 \cdot 5142$, and 1.8725 respectively.

In the tabulated results below, t is the temperature, h the observed difference in height (in mm.) in the two arms of the \mathbf{U}-tube, H the corrected value, $d_{4^{\circ}}{ }^{\circ}$ the density (calculated from the observed densities by assuming a linear variation with temperature), γ the surface tension (dynes $/ \mathrm{cm}$.) computed from the equation $\gamma=K H d, P$ the parachor (density of the vapour was neglected in the calculation), M the molecular weight, and $M n_{D_{0}^{20}}^{20^{\circ}}$ the molecular refraction coefficient. The number in parentheses following the value of $\gamma_{20^{\circ}}$ is the temperature coefficient of surface tension. The following abbreviations are employed: $d_{4}^{20^{\circ}}$ for $d_{40^{200}}^{20} ; R_{\mathrm{C}}, R_{\mathrm{D}}, R_{\mathrm{F}}$, and R_{α}, for $\left[R_{L}\right]_{\mathrm{C}},\left[R_{L}\right]_{\mathrm{D}},\left[R_{L}\right]_{\mathrm{F}}$, and $\left[R_{L}\right]_{\mathcal{Q}^{\prime}}$, respectively. Data for $\left[R_{L}\right]_{\mathrm{D}}, M n_{\mathrm{D}}^{2 \mathrm{D}^{\circ}},\left[R_{L}\right]_{\mathrm{F}-\mathrm{C}}$, and $\left[R_{L}\right]_{\mathbf{c}^{\cdot}-\mathrm{c}}$, already given in Tables I and II, are not repeated in the constants for each compound.

Assistance in the preparations and measurements marked with an asterisk was given by R. J. Tudor, M.Sc.

Methyl β-methylglutarate (Found: C, $55 \cdot 1 ; \mathrm{H}, 8.0 . \mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{4}$ requires $\mathrm{C}, 55 \cdot 1 ; \mathrm{H}, 8.1 \%$); $M=174 \cdot 11$; b. p. $110^{\circ} / 19 \mathrm{~mm} . ; n_{\mathrm{C}} 1 \cdot 42334, n_{\mathrm{D}} 1 \cdot 42556, n_{\mathrm{F}} 1 \cdot 43073, n_{\mathrm{G}} \cdot 1 \cdot 43452 ; R_{\mathrm{C}} 42 \cdot 16$, $R_{\mathrm{F}} 42 \cdot 80, R_{G^{\prime}} 43 \cdot 13$. Densities determined: $d_{4^{20^{\circ}}} 1 \cdot 0523, d_{4^{\circ}}^{638^{\circ}} 1 \cdot 0147, d_{4^{\circ}}^{85 \cdot 0^{\circ}} 0.9929$.

t.	$\gamma_{20^{\circ}}=33.77$ (0.106). App. B.										
	h.	H.	$d_{4{ }^{\text {c }}}{ }^{\circ}$.	γ.	P.	t.	h.	H.	$d_{4}^{\text {cos }}$.	γ.	P.
$24.0{ }^{\circ}$	$12 \cdot 89$	$12 \cdot 65$	1.0487	$33 \cdot 25$	$399 \cdot 0$	$86.9{ }^{\circ}$	$10 \cdot 91$	$10 \cdot 67$	0.9912	26.59	$398 \cdot 9$
$63 \cdot 8$	$11 \cdot 67$	11.43	1.0147	$29 \cdot 16$	$398 \cdot 7$					Mean	$399 \cdot 9$

Methyl $\beta \beta$-dimethylglutarate, $M=188 \cdot 13$; b. p. $111^{\circ} / 20 \mathrm{~mm}$.; $n_{\mathrm{C}} 1.42679, n_{\mathrm{D}} 1.42897$, $n_{\mathrm{F}} 1 \cdot 43424, n_{G^{\prime}} 1 \cdot 43809 ; R_{\mathrm{C}} 46 \cdot 67, R_{\mathrm{F}} 47.38, R_{G^{\prime}} 47 \cdot 75$. Densities determined: $d_{4^{\circ}}^{20{ }^{\circ}} 1 \cdot 0345$; $d_{4^{\circ}}^{61.8^{\circ}} 0.9944, d_{4^{\circ}}^{85} 7^{\circ} 0.9742$.

$$
\gamma_{20^{\circ}}=31.44(0.098) . \quad \text { App. A. }
$$

23.9	16.49	16.25	1.0306	31.06	430.9	$85 \cdot 4$	14.12	13.88	0.9745	$25 \cdot 08$	$432 \cdot 0$
61.8	$15 \cdot 06$	14.82	0.9944	27.33	$432 \cdot 6$					Mean 431.8	

${ }^{*}$ Methyl β-methyl- β-ethylglutavate, $M=202 \cdot 14$; b. p. $124^{\circ} / 21 \mathrm{~mm}$. (Dickens, Kon, and Thorpe, J., 1922, 121, 1503 , give b. p. $128^{\circ} / 19 \mathrm{~mm}$.) ; $n_{\mathrm{C}} 1.43312, n_{\mathrm{D}} 1.43530, n_{\mathrm{F}} 1.44062$, n_{G}, $1.44446 ; R_{\mathrm{C}} 50.95, R_{\mathrm{F}} 51 \cdot 72, R_{G^{\prime}} 52 \cdot 12$. Densities determined: $d_{4^{\circ}}^{20^{\circ}} 1 \cdot 0313, d_{4^{\circ}}^{62 \cdot 6^{\circ}} 0.9981$, $d_{4^{5}}^{857^{\circ}} 0.9693$.

$$
\gamma_{20^{\circ}}=31.97(0 \cdot 097) . \quad \text { App. A. }
$$

$23 \cdot 9$	16.81	16.57	1.0281	$31 \cdot 59$	$466 \cdot 1$	$84 \cdot 5$	$14 \cdot 44$	14.20	0.9703	$25 \cdot 55$	$468 \cdot 4$
$62 \cdot 2$	15.38	15.14	0.9984	28.03	465.9					Mean 466.8	

*Methyl $\beta \beta$-diethylglutarate, $M=216 \cdot 16$; b. p. $135^{\circ} / 20 \mathrm{~mm}$. (Dickens, Kon, and Thorpe, loc. cit., give b. p. $\left.131^{\circ} / 16 \mathrm{~mm}.\right) ; n_{\mathrm{C}} 1.44023, n_{\mathrm{D}} 1.44245, n_{\mathrm{F}} 1.44780, n_{\mathrm{G}}, 1.45173 ; R_{\mathrm{C}} 55 \cdot 49$, $R_{\mathrm{F}} 56 \cdot 33, R_{\mathbf{G}^{\prime}} 56.75$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 1 \cdot 0270, d_{4^{6}}^{6 \cdot 0^{\circ}} 0.9924, d_{4^{\circ}}^{85 \cdot 8^{\circ}} 0.9732$.

$\gamma_{20^{\circ}}=31.74(0.089) . \quad$ App. B.											
$23 \cdot 0$	12.47	$12 \cdot 23$	1.0236	31-47	$500 \cdot 2$	$85 \cdot 3$	$10 \cdot 83$	10.59	$0 \cdot 9736$	25.92	$501 \cdot 0$
$62 \cdot 0$	$11 \cdot 46$	11.22	0.9924	$28 \cdot 00$	$501 \cdot 0$					Mean	$500 \cdot 7$

${ }^{*}$ Methyl β-methyl- β-n-propylglutarate (Found: $\mathrm{C}, 60 \cdot 9 ; \mathrm{H}, 9 \cdot 3 . \quad \mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{4}$ requires $\mathrm{C}, 61 \cdot 1$; $\mathrm{H}, 9 \cdot 3 \%), M=216 \cdot 16$; b. p. $130^{\circ} / 17 \mathrm{~mm} . ; n_{\mathrm{C}} 1 \cdot 43522, n_{\mathrm{D}} 1.43741, n_{\mathrm{F}} 1.44281, n_{\mathrm{G}}, 1.44677$; $R_{\mathrm{C}} 55 \cdot 89, R_{\mathrm{F}} 56 \cdot 74, R_{\mathrm{G}^{\prime}} 57 \cdot 20$. Densities determined : $d_{4^{20}}{ }^{\circ} 1 \cdot 0095, d_{4^{6 \cdot}}{ }^{\circ \cdot{ }^{\circ}} 0 \cdot 9776, d_{4^{\circ}}^{86 \cdot 2^{\circ}} 0.9567$.
$\gamma_{20^{\circ}}=31 \cdot 17(0 \cdot 092) . \quad$ App. B.

t.	h.	H.	d_{4}^{10}.	γ.	P.	t.	h.	H.	$d_{4{ }^{\circ}}{ }^{\circ}$.	γ.	P.
$27 \cdot 3$	$12 \cdot 34$	$12 \cdot 10$	$1 \cdot 0037$	$30 \cdot 53$	$506 \cdot 3$	$85 \cdot 4$	$10 \cdot 71$	$10 \cdot 47$	0.9573	$25 \cdot 20$	$505 \cdot 9$
$62 \cdot 4$	$11 \cdot 35$	11•11	$0 \cdot 9776$	$27 \cdot 31$	$505 \cdot 5$					Mea	$505 \cdot 9$

*Methyl β-ethyl- β-n-propylglutarate (Found: $\mathrm{C}, 62 \cdot 6 ; \mathrm{H}, \mathbf{9 \cdot 6} . \quad \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{4}$ requires $\mathrm{C}, 62 \cdot 6$; $\mathrm{H}, 9.6 \%), M=230 \cdot 17$; b. p. $142^{\circ} / 20 \mathrm{~mm} . ; n_{\mathrm{C}} 1.44041, n_{\mathrm{D}} 1.44265, n_{\mathrm{F}} 1 \cdot 44806, n_{\mathrm{G}}, 1.45207$; $R_{\mathrm{C}} 60 \cdot 21, R_{\mathrm{F}} 61 \cdot 12, R_{\mathrm{G}}, 61 \cdot 59$. Densities determined: $d_{4^{\circ}}^{20{ }^{\circ}} 1 \cdot 0083, d_{4^{\circ}}^{63 \cdot 0^{\circ}} 0.9765, d_{4^{\circ}}^{87}{ }^{\circ} 0.9569$.
$\gamma_{20^{\circ}}=31.37(0.090) . \quad$ App. B.

$19 \cdot 0$	$12 \cdot 64$	$12 \cdot 40$	1.0091	$31 \cdot 46$	$540 \cdot 2$	86.0	10.79	10.55	0.9580	$25 \cdot 41$	$539 \cdot 4$
62.7	11.47	11.23	0.9767	27.58	$540 \cdot 0$					Mean $539 \cdot 8$	

*Methyl di-n-propylglutarate (Found : C, $63 \cdot 7 ; \mathrm{H}, 9 \cdot 9 . \quad \mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{4}$ requires $\mathrm{C}, 63 \cdot 9 ; \mathrm{H}, 9.9 \%$), $M=244 \cdot 19$; b. p. $151^{\circ} / 20 \mathrm{~mm}$.; $n_{\mathrm{C}} 1 \cdot 44092, n_{\mathrm{D}} 1 \cdot 44315, n_{\mathrm{F}} 1 \cdot 44856, n_{\mathrm{G}}, 1 \cdot 45256 ; R_{\mathrm{C}} 64 \cdot 74$, $R_{\mathrm{F}} 65 \cdot 71, R_{\mathbf{G}^{\prime}} 66 \cdot 24$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0.9958, d_{4^{\circ}}^{63 \cdot 6^{\circ}} 0.9626, d_{4^{\circ}}^{86 \cdot 8^{\circ}} 0.9443$.

$$
\gamma_{20^{\circ}}=30.53(0.090) . \quad \text { App. A. }
$$

19.5	16.79	16.55	0.9962	30.58	576.4	$85 \cdot 4$	14.36	$14 \cdot 12$	0.9454	24.76	$576 \cdot 1$
63.6	15.06	14.82	0.9626	26.46	$575 \cdot 3$					Mean $575 \cdot 9$	

Methyl cyclopentane-1:1-diacetate, $M=214 \cdot 14$; b. p. $141^{\circ} / 17 \mathrm{~mm}$. (Dickens, Kon, and Thorpe, J., 1922, 121, 1503, give b. p. $162^{\circ} / 15 \mathrm{~mm}$. : this is definitely high); $n_{\mathrm{c}} 1 \cdot 45366, n_{\mathrm{D}}$ $1 \cdot 45597$, $n_{\mathrm{F}} 1 \cdot 46163$, $n_{G^{\prime}} 1 \cdot 46580 ; R_{\mathrm{C}} 53 \cdot 61, R_{\mathrm{F}} 54 \cdot 34, R_{G^{\prime}} 54 \cdot 84$. Densities determined: $d_{4^{\circ}}^{200^{\circ}} 1 \cdot 0810, d_{4^{\circ}}^{61 \cdot 8^{\circ}} 1 \cdot 0476, d_{4^{\circ}}^{85 \cdot 8^{\circ}} 1 \cdot 0269$.

$\gamma_{20^{\circ}}=35 \cdot 40(0 \cdot 107) . \quad$ App. A.											
$23 \cdot 4$	17.77	17.53	1.0779	35.04	$483 \cdot 3$	$85 \cdot 8$	$15 \cdot 18$	14.94	$1 \cdot 0269$	28.45	$481 \cdot 6$
$61 \cdot 8$	16.15	15.91	$1 \cdot 0476$	30.91	$482 \cdot 0$					Mean	$482 \cdot 3$

*Methyl 3-methylcyclopentane-1:1-diacetate (Found: C, 63•1; H, 8.8. $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{4}$ requires C, $63.2 ; \mathrm{H}, 8.8 \%$), b. p. $148^{\circ} / 19 \mathrm{~mm} . ; M=228.16 ; n_{\mathrm{C}} 1.45031, n_{\mathrm{D}} 1.45257, n_{\mathrm{F}} 1.45814$, $n_{\mathrm{G}^{\prime}} 1 \cdot 46225 ; R_{\mathrm{C}} 58 \cdot 36, R_{\mathrm{F}} 59 \cdot 23, R_{\mathrm{G}^{\prime}}, 59 \cdot 70$. Densities determined: $d_{4^{\circ}}^{20^{\circ}} 1 \cdot 0513, d_{4^{63} \cdot 4^{\circ}} 1 \cdot 0171$, $d_{4^{\circ}}^{84 \cdot 3^{\circ}} 1 \cdot 0003$.

Methyl cyclohexane-1:1-diacetate, $M=228 \cdot 16$; b. p. $159^{\circ} / 21 \mathrm{~mm}$. (Dickens, Kon, and Thorpe, J., 1922, 121, 1503, give b. p. $\left.164^{\circ} / 26 \mathrm{~mm}.\right)$; $n_{\mathrm{C}} 1 \cdot 46136, n_{\mathrm{D}} 1 \cdot 46374, n_{\mathrm{F}} 1 \cdot 46946, n_{\mathrm{G}}$, $1 \cdot 47364 ; R_{\mathrm{O}} 58.01, R_{\mathbf{F}} 58 \cdot 87, R_{\mathbf{G}^{\prime}} 59 \cdot 32$. Densities determined: $d_{4^{\circ}}^{20^{\circ}} 1 \cdot 0801, d_{4^{\circ}}^{6 \cdot 4^{\circ}} 1 \cdot 0460$, $d_{4^{84} 4^{\circ}} 1 \cdot 0283$. This specimen (in App. B) gave $\gamma_{20^{\circ}}=36 \cdot 10(0 \cdot 102) ; P=517 \cdot 4$. A redistilled specimen, b. p. $155^{\circ} / 18 \mathrm{~mm}$., gave $d_{40^{20}}{ }^{\circ} 1 \cdot 0801, d_{4{ }^{\circ}}^{62 \cdot 2^{\circ}} 1 \cdot 0468, d_{45^{8.20}} 1 \cdot 0283$.

$\gamma_{20^{\circ}}=35.83(0.098)$. App. A.											
23.0	18.02	17.78	$1 \cdot 0777$	35.54	516.9	$85 \cdot 9$	$15 \cdot 69$	$15 \cdot 45$	$1 \cdot 0278$	$29 \cdot 45$	517•1
62.5	16.51	16.27	$1 \cdot 0466$	31.58	516.8					Mean	516.9

*Methyl 3-methylcyclohexane-1: 1-diacetate (Found: C, 64•5; H, 9.2. $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{4}$ requires C, $64 \cdot 4 ; \mathrm{H}, 9 \cdot 2 \%), M=242 \cdot 18$; b. p. $155^{\circ} / 15 \mathrm{~mm}$.; $n_{\mathrm{C}} 1.45881, n_{\mathrm{D}} 1.46115, n_{\mathrm{F}} 1 \cdot 46687$, $n_{\mathbf{G}^{\prime}} 1 \cdot 47115 ; R_{\mathrm{G}} 62 \cdot 99, R_{\mathrm{F}} 63 \cdot 95, R_{\mathbf{G}^{\prime}} 64 \cdot 46$. Densities determined: $d_{4^{\circ}}^{20^{\circ}} 1 \cdot 0506, d_{4^{6}}^{6 \cdot 9} 1 \cdot 0187$, $d_{4^{8}}^{85 \cdot 0^{\circ}} 1 \cdot 0009$.
$\gamma_{20^{\circ}}=33 \cdot 28(0 \cdot 080) . \quad$ App. C.

20.6	17.14	16.90	1.0501	$33 \cdot 23$	553.7	$85 \cdot 8$	15.01	14.77	1.0003	27.67	$555 \cdot 3$
62.9	15.98	15.74	1.0187	30.02	556.5						Mean
$555 \cdot 2$											

*Methyl 4-methylcyclohexane-1:1-diacetate (Found: C, $64 \cdot 4 ; \mathrm{H}, 9 \cdot 2 \%$), $M=242 \cdot 18$; b. p. $164^{\circ} / 20 \mathrm{~mm} . ; n_{\mathrm{C}} 1 \cdot 45879, n_{\mathrm{D}} 1 \cdot 46115, n_{\mathrm{F}} 1 \cdot 46685, n_{\mathrm{G}}, 1 \cdot 47102 ; R_{\mathrm{C}} 62 \cdot 77, R_{\mathrm{F}} 63 \cdot 71, R_{\mathrm{G}}, 64 \cdot 19$. Densities determined : $d_{4^{\circ}}^{20{ }^{\circ}} 1 \cdot 0547, d_{4^{\circ}}^{632^{\circ}} 1 \cdot 0204, d_{4^{\circ}}^{8566^{\circ}} 1 \cdot 0038$.

$\gamma_{20^{\circ}}=33.27(0.079) . \quad$ App. B.											
$16 \cdot 9$	1.285	12.61	$1 \cdot 0572$	33.52	$551 \cdot 2$	$85 \cdot 6$	11.36	$11 \cdot 12$	$1 \cdot 0038$	28.06	$555 \cdot 3$
$63 \cdot 9$	11.88	11.64	1.0198	$29 \cdot 84$	$551 \cdot 1$					Mean	$553 \cdot 9$

1764 Physical Properties and Chemical Constitution. Part II.

*Methyl trans-decahydronaphthalene-2 : 2-diacetate, $M=282 \cdot 21$; b. p. $193^{\circ} / 14 \mathrm{~mm}$. (Rao, J., 1929, 1962, gives b. p. $190^{\circ} / 12 \mathrm{~mm}$.) ; $n_{\mathrm{C}} 1 \cdot 47946, n_{\mathrm{D}} 1 \cdot 48195, n_{\mathrm{F}} 1.48799, n_{\mathrm{G}}, 1 \cdot 49253 ; R_{\mathrm{C}}$ $74 \cdot 49, R_{\mathrm{D}} 74 \cdot 81, R_{\mathrm{F}} 75 \cdot 61, R_{\mathrm{G}^{\prime}} 76 \cdot 21 ; R_{\mathrm{G}^{\prime}-\mathrm{c}} 1 \cdot 72, R_{\mathrm{F}-\mathrm{C}} 1 \cdot 12 ; M n_{\mathrm{D}}^{21^{\circ}} 418 \cdot 22$. Densities determined : $d_{40^{\circ}}^{200^{\circ}} 1 \cdot 0753, d_{4^{\circ}}^{64 \cdot 2^{\circ}} 1 \cdot 0418, d_{4^{\circ}}^{8,22^{\circ}} 1 \cdot 0247$.

				$\gamma_{20^{\circ}}$	36.44). A	A.				
t.	h.	H.	d^{10} 。	γ.	P.	t.	h.	H.	$d_{4{ }^{\circ}}{ }^{\circ}$.	γ.	P.
$17 \cdot 2$	18.61	18.37	$1 \cdot 0777$	$36 \cdot 71$	$644 \cdot 6$	$84 \cdot 0$	16.23	15.99	$1 \cdot 0241$	$30 \cdot 37$	$646 \cdot 9$
$61 \cdot 8$	16.93	16.69	$1 \cdot 0437$	$32 \cdot 30$	$644 \cdot 6$					Mean	$645 \cdot 4$

*Methyl trans-hexahydrohydrindene-2:2-diacetate, $M=268 \cdot 19$; b. p. $179^{\circ} / 12 \mathrm{~mm}$. (Kandiah, J., 1931, 943 , gives b. p. $172^{\circ} / 15 \mathrm{~mm} ., d_{4^{\circ}}^{190^{\circ}} 1 \cdot 074, n_{4^{\circ}}^{190^{\circ}} 1.4769$) ; $n_{\mathrm{C}} 1.47297, n_{\mathrm{D}} 1.47538, n_{\mathrm{F}}$ $1.48137, n_{\mathrm{G}^{\prime}} 1.48580 ; R_{\mathrm{C}} 70 \cdot 09, R_{\mathrm{D}} 70 \cdot 39, R_{\mathrm{F}} 71 \cdot 16, R_{\mathrm{G}^{\prime}} 71 \cdot 71 ; R_{\mathrm{G}^{\prime}-\mathrm{c}} 1 \cdot 62, R_{\mathrm{F}-\mathrm{c}} 1 \cdot 07 ; M n_{\mathrm{D}}^{20^{\circ}}$ $395 \cdot 68$. Densities determined : $d_{4^{20}}^{20} 1 \cdot 0734, d_{4^{\circ}}^{63 \cdot 0^{\circ}} 1 \cdot 0404, d_{40^{86}}^{8 \cdot 6^{\circ}} 1 \cdot 0221$.

$21 \cdot 9$	17.96	$17 \cdot 72$	$1 \cdot 0698$	$35 \cdot 50$	$611 \cdot 9$	$87 \cdot 1$	$15 \cdot 64$	$15 \cdot 40$	1.0217	$29 \cdot 46$	$611 \cdot 5$
62.5	16.49	16.25	1.0408	$31 \cdot 67$	$611 \cdot 3$					Mean	$611 \cdot 6$

Ethyl $\beta \beta$-dimethylglutarate, $M=216 \cdot 16$; b. p. $126^{\circ} / 17 \mathrm{~mm}$.; $n_{\mathrm{C}} 1 \cdot 42600, n_{\mathrm{D}} 1 \cdot 42817, n_{\mathrm{F}}$ $1.43346, n_{G}, 1.43718 ; R_{\mathrm{C}} 55 \cdot 98, R_{\mathbf{F}} 56 \cdot 84, R_{\mathbf{G}^{\prime}} 57 \cdot 26$. Densities determined: $\bar{d}_{4^{\circ}}^{20^{\circ}} 0.9893$, $d_{49^{630}}{ }^{\circ} 0.9519, d_{4^{\circ}}^{85}{ }^{\circ} 0.9319$.

18.5	12.21	11.97	0.9907	29.82	509.9	$85 \cdot 1$	10.37	10.13	0.9322	23.74	511.7
62.7	10.89	10.65	0.9522	25.50	510.1					Mean 510.6	

Ethyl cyclopentane-1:1-diacetate, $M=242 \cdot 18$; b. p. $153^{\circ} / 14 \mathrm{~mm}$. (Kon, J., 1922, 121, 525 , gives b. p. $157-158^{\circ} / 16 \mathrm{~mm}$.) ; $n_{\mathrm{C}} 1 \cdot 44916, n_{\mathrm{D}} 1 \cdot 45147, n_{\mathrm{F}} 1 \cdot 45698, n_{\mathrm{G}}, 1 \cdot 46115 ; R_{\mathrm{C}} 62 \cdot 92$, $R_{\mathrm{D}} 63 \cdot 20, R_{\mathrm{F}} 63.87, R_{\mathrm{G}}, 64 \cdot 38 ; R_{\mathrm{G}^{\prime}-\mathrm{c}} 1 \cdot 46, R_{\mathrm{F}-\mathrm{c}} 0.95 ; M n_{\mathrm{D}}^{20^{\circ}} 351 \cdot 52$. Densities determined: $d_{4^{\circ}}^{20{ }^{\circ}} 1 \cdot 0326, d_{4^{\circ}}^{62 \cdot 4^{\circ}} 0.9982, d_{4}^{85 \cdot 66^{\circ}} 0 \cdot 9789$.
$\gamma_{20^{\circ}}=32.84(0.098)$. App. B.

15.7	13.01	12.77	1.0360	33.26	561.4	85.6	11.01	10.77	0.9789	26.51	561.3
62.4	11.66	11.42	0.9982	28.66	561.4					Mean 561.4	

Ethyl cyclohexane-1:1-diacetate, $M=256 \cdot 19$; b. p. $165^{\circ} / 14 \mathrm{~mm}$. (Thole and Thorpe, J., $1911,99,446$, give b. p. $288^{\circ} / 733 \mathrm{~mm}$.) ; $n_{\mathrm{C}} 1 \cdot 45626, n_{\mathrm{D}} 1 \cdot 45856, n_{\mathrm{F}} 1 \cdot 46423, n_{\mathrm{G}}, 1 \cdot 46836$; $R_{\mathrm{C}} 67 \cdot 36, R_{\mathrm{F}} 68 \cdot 38, R_{G^{\prime}} 68 \cdot 90$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 1 \cdot 0344, d_{4^{\circ}}^{64 \cdot 2^{\circ}} 1 \cdot 0007, \bar{d}_{4^{\circ}}^{86 \cdot 4^{\circ}} 0 \cdot 9833$.
$\gamma_{20^{\circ}}=33.48(0.095)$. App. B.

18.6	13.15	12.91	1.0355	33.61	595.7	86.4	11.26	11.02	0.9830	27.24	595.4
63.6	11.88	11.64	1.0012	29.30	595.3					Mean 595.5	

${ }^{*}$ Ethyl 3-methylcyclohexane-1:1-diacetate (Found: $\mathrm{C}, 66 \cdot 6 ; \mathrm{H}, 9 \cdot 7 . \mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{4}$ requires C, $66.6 ; \mathrm{H}, 9.7 \%$), $M=270.21$; b. p. $177^{\circ} / 21 \mathrm{~mm}$; $n_{\mathrm{C}} 1.45405, n_{\mathrm{D}} 1.45637, n_{\mathrm{F}} 1.46205$, $n_{G}, 1 \cdot 46617 ; R_{\mathrm{C}} 72 \cdot 17, R_{\mathrm{F}} 73 \cdot 26, R_{G^{\prime}} 73 \cdot 81$. Densities determined: $d_{4^{\circ}}^{20^{\circ}} 1 \cdot 0142, d_{4^{\circ}}^{6320} 0.9815$, $d_{4^{8}}^{8 \cdot 2^{\circ}} 0.9568$.

$\gamma_{20^{\circ}}=31.70$ (0.092). App. B.											
$19 \cdot 4$	12.69	12.45	$1 \cdot 0147$	31.76	$632 \cdot 1$	$85 \cdot 7$	10.89	$10 \cdot 65$	0.9556	$25 \cdot 59$	$635 \cdot 8$
$62 \cdot 5$	11.51	$11 \cdot 27$	0.9821	$27 \cdot 83$	631.9					Mean	$633 \cdot 3$

*Ethyl 4-methylcyclohexane-1:1-diacetate (Found: C, 66.5 ; H, 9.7%), $M=270 \cdot 21$; b. p. $178^{\circ} / 21 \mathrm{~mm}$.; $n_{\mathrm{C}} 1 \cdot 45402, n_{\mathrm{D}} 1 \cdot 45647, n_{\mathrm{F}} 1 \cdot 46212, n_{\mathrm{G}}, 1 \cdot 46633 ; R_{\mathrm{C}} 71 \cdot 98, R_{\mathrm{F}} 73 \cdot 08, R_{\mathrm{G}}, 73 \cdot 66$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 1 \cdot 0166, d_{4^{632^{\circ}}} 0.9845, d_{4^{\circ}}^{84} \cdot 7^{\circ} 0.9674$.

$\gamma_{200^{\circ}}=31.72(0.089) . \quad$ App. С.											
18.0	16.97	16.73	1.0182	$31 \cdot 90$	$630 \cdot 7$	$86 \cdot 2$	14.55	14.31	$0 \cdot 9662$	$25 \cdot 89$	$630 \cdot 8$
$63 \cdot 2$	$15 \cdot 42$	$15 \cdot 18$	0.9845	27.98	$631 \cdot 3$					Mean	$630 \cdot 9$

*Ethyl trans-hexahydrohydrindene-2 : 2-diacetate, $M=296 \cdot 22$; b. p. $196^{\circ} / 14 \mathrm{~mm}$. (Kandiah, J., 1931, 943, gives b. p. $182^{\circ} / 16 \mathrm{~mm} ., n_{\mathrm{D}}^{19^{\circ}} 1 \cdot 4687, d_{4}^{19^{\circ}} 1 \cdot 043$); $n_{\mathrm{C}} 1 \cdot 46700, n_{\mathrm{D}} 1 \cdot 46938, n_{\mathrm{F}} 1 \cdot 47528$, $n_{\mathbf{G}^{\prime}} 1 \cdot 47963 ; R_{\mathrm{C}} 79 \cdot 31, R_{\mathrm{D}} 79 \cdot 65, R_{\mathrm{F}} 80 \cdot 53, R_{\mathrm{G}^{\prime}} 81 \cdot 15 ; R_{\mathrm{G}^{\prime}-\mathrm{c}} 1 \cdot 84, R_{\mathrm{F}-\mathrm{c}} 1 \cdot 22 ; M u_{\mathrm{D}}^{26^{\circ}} 435 \cdot 26$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 1 \cdot 0362, d_{4}^{63 \cdot 2^{\circ}} 1 \cdot 0022, d_{4^{8 `}}{ }^{\circ}{ }^{\circ} 0.9846$.

t.	h.	H.	$\gamma_{20^{\circ}}=33.95$ (0.094). App. B.						$d_{40}{ }^{\circ}$.	γ.	P.
			$d_{\text {d }}{ }^{\circ}$.	γ.	P.	t.	h.	H.			
$22 \cdot 3$	$13 \cdot 21$	12.97	1.0343	33.73	$690 \cdot 2$	$85 \cdot 6$	11.50	11.26	0.9859	27-91	$690 \cdot 6$
$63 \cdot 2$	$12 \cdot 06$	11.82	$1 \cdot 0022$	29.78	$690 \cdot 5$					Mean	$690 \cdot 4$

*Ethyl trans-decahydronaphthalene-2: 2-diacetate, $M=310 \cdot 24$; b. p. $208^{\circ} / 17 \mathrm{~mm}$. (Rao, J., 1929 , 1958, gives b. p. $209^{\circ} / 16 \mathrm{~mm}$., $n_{4^{1 / 8^{\circ}}} 1 \cdot 47702, d_{1^{\circ}}^{16} 8^{\circ} 1 \cdot 04115$); $n_{\mathrm{C}} 1 \cdot 47313, n_{\mathrm{D}} 1 \cdot 47558, n_{\mathrm{F}}$ $1.48154, n_{G^{\prime}} 1.48598 ; R_{\mathrm{C}} 83 \cdot 66, R_{\mathrm{D}} 84 \cdot 04, R_{\mathrm{F}} 84.93, R_{\mathrm{G}^{\prime}} 85.61 ; R_{\mathrm{G}^{\prime}-\mathrm{c}} 1.95, R_{\mathrm{F}-\mathrm{c}} 1.27 ; M n_{\mathrm{D}}^{20^{\circ}}$ 457.78. Densities determined : $d_{4^{\circ}}^{20{ }^{\circ}} 1 \cdot 0405, d_{4^{\circ}}^{64 \cdot 0^{\circ}} 1 \cdot 0054, d_{4^{\circ}}^{841^{\circ}} 0.9894$.

$\gamma_{20^{\circ}}=34.43$ (0.096). App. B.											
$18 \cdot 9$	$13 \cdot 43$	$13 \cdot 19$	$1 \cdot 0414$	$34 \cdot 54$	722.2	$84 \cdot 1$	$11 \cdot 69$	$11 \cdot 45$	0.9894	28.48	$724 \cdot 4$
$63 \cdot 5$	$12 \cdot 15$	$11 \cdot 19$	$1 \cdot 0058$	$30 \cdot 12$	$722 \cdot 6$					Mean	$723 \cdot 1$

Revised Data.—Methyl glutarate. $\quad M=160 \cdot 10$; b. p. $109^{\circ} / 21 \mathrm{~mm} . ; n_{\mathrm{C}} 1 \cdot 42208, n_{\mathrm{D}} 1 \cdot 42415$, $n_{\mathrm{F}} 1.42925, n_{\mathrm{G}^{\prime}} 1.43362 ; R_{\mathrm{C}} 37.42, R_{\mathrm{F}} 37.98, R_{\mathrm{G}^{\prime}} 38.31$.

Methyl adipate. $M=174 \cdot 11$; b. p. $119^{\circ} / 17 \mathrm{~mm}$; $n_{\mathrm{C}} 1 \cdot 42616, n_{\mathrm{D}} 1 \cdot 42835, n_{\mathrm{F}} 1 \cdot 43340$, $n_{\mathrm{G}}, 1 \cdot 43772 ; R_{\mathrm{C}} 42 \cdot 04, R_{\mathrm{F}} 42 \cdot 66, R_{\mathrm{G}}, 43 \cdot 03$.

Methyl pimelate. $M=188.13$; b. p. $128^{\circ} / 16 \mathrm{~mm} . ; n_{\mathrm{C}} 1.42872, n_{\mathrm{D}} 1.43088, n_{\mathrm{F}} 1.43614$, $n_{G}, 1 \cdot 43989 ; R_{\mathrm{G}} 46 \cdot 68, R_{\mathrm{F}} 47 \cdot 39, R_{\mathrm{G}}, 47 \cdot 74$.

Methyl suberate. $M=202 \cdot 14$; b. p. $148^{\circ} / 20 \mathrm{~mm} . ; n_{\mathrm{C}} 1.43145, n_{\mathrm{D}} 1 \cdot 43370, n_{\mathrm{F}} 1 \cdot 43892$, $n_{G^{\prime}}, 1 \cdot 44274 ; R_{\mathrm{C}} 51 \cdot 36, R_{\mathrm{F}} 52 \cdot 13, R_{\mathrm{G}^{\prime}}, 52 \cdot 51$.

The figures in Tables I and II (Part I, this vol., p. 335) must accordingly be amended ; the mean value of $M n_{\mathrm{D}}^{20^{\circ}}$ for the methyl esters is $20 \cdot 62$.

The author's thanks are due to the Dixon Fund Committee of the University of London and to Imperial Chemical Industries for grants.

Woolwich Polytechnic, London, S.E. 18.
[Rcceived, October 2nd, 1934.]

[^0]: * The difference in $M n_{\mathrm{D}}^{20^{\circ}}$ for the diethyl series appears anomalous.

